
Boundedness of Littlewood-Paley-Stein (LPS)

Operator in Lebesgue Space with an Improved

Sufficient Condition

Pebrudal Zanu1, Wono Setya Budhi2, Yudi Soeharyadi3

Reaserch Division of Analysis and Geometry, Mathematics and Natural Science Faculty,
Institut Teknologi Bandung

E-mail: 1pebrudal@gmail.com, 2wono@math.itb.ac.id, 3yudish@math.itb.ac.id

Abstract. Littlewood-Paley-Stein (LPS) operator is operator that maps a function to square

function associated with a function ψ, that is f 7→
(∑

j∈Z |ψ2−j ∗ f |2
)1/2

. Littlewood-Paley

established a sufficient condition for boundedness of LPS operator in classical Lebesgue Space.
The condition is expressed in term of bound for sum |ψ|+ |∇ψ|. In this article, we investigate
and prove boundednesss of LPS operator with a generalized version for the bound from the
original version.
Keywords: Boundedness of Operator, LPS Operator, Lebesgue Space

1. Introduction

In this work we will prove the boundedness of Littlewood-Paley operator type square function
in Lebesgue space with an improved sufficient condition. This operator has introduced by Stein
is called Littlewood-Paley-Stein (LPS) operator [2].

Let ψ : Rn → R is be an integrable function and ψ ∈ C1(Rn) with condition

(i). ψ̂(0) = 0, where ψ̂ is Fourier Transform of ψ.

(ii). There exists B > 0 such that for every x ∈ Rn then |ψ(x)|+ |∇ψ(x)| ≤ B
(1+|x|)n+1 .

Define LPS operator gψ by

gψ(f) :=

∑
j∈Z
|∆j(f)|2

 1
2

,

where ∆j(f) := ψ2−j ∗ f for every f is measurable function, ψ2−j (x) := 2jnψ(2jx) and j ∈ Z.
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Let 1 ≤ p < ∞, we define weak Lebesgue space wLp(Rn) by the set of all measurable function
in Rn such that

‖f‖wLp = sup
t>0

t|{x ∈ Rn : |f(x)| > t}|
1
p <∞

Littlewood-Paley showed the following boundedness in [1]

Theorem 1. Let 1 < p < ∞. If ψ integrable function in Rn , ψ ∈ C1(Rn), satisfies condition
(i) and (ii) then gψ is

(1) bounded from L1(Rn) to wL1(Rn).

(2) bounded from Lp(Rn) to Lp(Rn). Hereafter, we say bounded on Lp(Rn).

The aim of this article to show the boundedness of gψ from L1(Rn) to wL1(Rn) and the
boundedness on Lp(Rn) with with weaker condition for (ii) become

|ψ(x)|+ |∇ψ(x)| ≤ B

(1 + |x|)n+α
, α > 0 (1)

Our strategy to prove boundedness from L1(Rn) to wL1(Rn) by show gψ is Calderón-Zygmund
operator, while the boundedness on Lp(Rn) using Marcinkiewicz interpolation Theorem and
duality Theorem. Marcinkiewicz interpolation suffice to show gψ is bounded from L1(Rn) to
wL1(Rn) and bounded on Lp(Rn).

Note that for α ≥ 1 the boundedness easy to see by Theorem 1. So, we suffice to proof the
boundedness for 0 < α < 1.

The following is definition of Calderón-Zygmund kernel and Calderón-Zygmund operators

Definition 2 (Modification, [1], p.402). Let ~K : C → `2 be a bounded sublinier operator from

C to `2. ~K is Calderón-Zygmund kernel if only if satisfying following this condition

(K1). There exists ~K0 bounded linier operator such that

lim
ε→0

∥∥∥∥∥
∫
ε≤|y|≤1

~K(y)dy − ~K0

∥∥∥∥∥
`2

= 0

(K2). There exists Cn > 0 such that for every x ∈ Rn\{0}

‖ ~K(x)‖`2 ≤ Cn|x|−n

(K3). For every y ∈ Rn\{0} satisfies∫
|x|≥2|y|

‖ ~K(x− y)− ~K(x)‖`2dx ≤ Cn.

Calderón-Zygmund operator ‖~T‖`2 associated with kernel ~K as follows.

~Tf(x) = lim
ε→0

∫
|y|≥ε

~K(y)f(x− y)dy. (2)
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Proposition 3. Suppose ψ integrable function in Rn, ψ ∈ C1(Rn) and ψ satisfy the following
condition

(C1). ψ̂(0) = 0

(C2). Satisfy (1), where 0 < α < 1.

Let ~K(x) := {ψ2−j (x)}∞j=−∞. For f ∈ C∞0 (Rn) and ~T (f) := ~K ∗f then ~K is Calderón-Zygmund
kernel and gψ = ‖T (·)‖`2 is a Calderón-Zygmund operators.

2. Proof of Proposition 3 and the Aplication

For ~K is bounded linier operator and existence of ~K0 proved in [1] on Theorem 6.1.2, and the
proof does not depend on the new condition. So, we suffice to prove for condition (K2) and
(K3).

(K2). For 0 < α < 1, let x ∈ Rn, and choose k ∈ Z such that 2(k−1)/α ≤ |x| ≤ 2k/α∑
j∈Z

22jn|x|2n

(1 + |2jx|)2n+2α
≤
∑
j≤−k

22jn|x|2n +
∑
j>−k

1

22j |x|2α

≤
∑
j≤−k

2(2jn)/α|x|2n +
∑
j>−k

1

22j |x|2α

≤
∑
j≤−k

2
2(j+k)n

α +
∑
j>−k

1

22(j+k−1)

≤
∞∑
t=0

1

2
2tn
α

+

∞∑
t=0

1

22t
= C2

n,α.

(K3). For 0 < α < 1, by using mean value theorem, there exists θ ∈ (0, 1) such that for |x| ≥ 2|y|
satisfy |x− θy| ≥ 1

2 |x|, and

|ψ2−j (x− y)− ψ2−j (x)| ≤ 2j(n+1)|∇ψ(2j(x− θy))| ≤ B2nj(1 + 2j−1|x|)−(n+α)2j |y|. (3)

By using triangle inequality,

|ψ2−j (x− y)− ψ2−j (x)| ≤ 2B2nj(1 + 2j−1|x|)−(n+α). (4)

From (3), (4) and for γ ∈ [0, 1] is satisfied,

|ψ2−j (x− y)− ψ2−j (x)| ≤ 21−γB2nj(2j |y|)γ(1 + 2j−1|x|)−(n+α). (5)

Choose γ = α for 2j < 2
|x| , and γ = α

2 for 2j ≥ 2
|x| , from (5) we obtain

‖ ~K(x− y)− ~K(x)‖`2 ≤ KnB
(
|y|α|x|−n−α + |y|

α
2 |x|−n−

α
2

)
.

By using radial integral for α > 0 there exists Cn > 0 such that∫
|x|≥2|y|

‖ ~K(x− y)− ~K(x)‖`2dx ≤ CnB.

This step is completed for our prove to ~K is Calderón-Zygmund kernel. ~T associated with ~K in
relation 2, it implies gψ = ‖~T (·)‖`2 is Calderón-Zygmund Operators.

From Thoma [6] the Calderón-Zygmund operator implies the it is well-defined and bounded
from L1(Rn) to wL1(Rn).
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3. Operator gψ is bounded on L2(Rn)

We will give a new additional condition to ensure that the boundedness on L2(Rn) holds. The
new condition is not necessary condition and we still have replace this condition with other one.

Proposition 4. Let ψ is function satisfies condition in Propotition 3 and following condition

C3. For any y ∈ Rn\{0} and 0 < α < 1 satisfy∫
Rn
|ψ(x)− ψ(x− y)|dx ≤ B|y|α,

then gψ is bounded on L2(Rn).

Proof. For 0 < α < 1. Note that |e−2πix·ξ − 1| ≤ |ξ|
α
2 |x|

α
2 , then by (C1) and (C2) we obtain∣∣∣ψ̂(ξ)

∣∣∣ ≤ ∫
Rn
|e−2πix·ξ − 1||ψ(x)|dx ≤ |ξ|

α
2

∫
Rn
|x|

α
2 |ψ(x)|dx ≤ CαB|ξ|

α
2 . (6)

Note that

ψ̂(ξ) = −
∫
Rn
ψ(x− y)e−2πixξdx, with y =

ξ

2|ξ|2
,

such that from (C3) condition we obtain

|ψ̂(ξ)| =
∣∣∣∣12
∫
Rn
ψ(x)− ψ(x− y)e−2πixξdx

∣∣∣∣ ≤ B|y|α =

(
1

2

)α+1

B|ξ|−α. (7)

From (6) and (7), we obtain η, such that |η| = |ξ|α, and

|ψ̂(η)| ≤ CαB
√
η and |ψ̂(η)| ≤ CαB|η|−1. (8)

Furthermore, take η0 6= 0, the least k ∈ Z such that |2−kη0| ≤ 1. If j ≥ k then |2−jη0| ≤ 2k−j

and if j ≤ k then |2−jη0| > 2k−j . We obtain∑
j∈Z
|ψ̂(2−jη0)|2 =

∑
j≥k
|ψ̂(2−jη0)|2 +

∑
j<k

|ψ̂(2−jη0)|2 ≤ C2
αB

2. (9)

By using (9) and Plancherel theorem,

‖gψ(f)‖2L2(Rn) =

∫
Rn

∑
j∈Z
|(ψ2−j ∗ f)(x)|2

 dx =
∑
j∈Z

∫
Rn
|(ψ2−j ∗ f)(x)|2dx

=
∑
j∈Z

∫
Rn
|ψ̂2(2−jη)f̂2(η)|dη =

∫
Rn

∑
j∈Z
|ψ̂(2−jη)|2|f̂ |2L2(Rn)dη

≤ C2
αB

2‖f̂ |2L2(Rn) = C2
αB

2‖f‖2L2(Rn).
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4. The Boundedness of LPS Operator with an Improved Sufficient Condition

In this section, we will prove Lp−boundedness LPS operator with new condition

Proposition 5. Let 1 < p < ∞, If ψ satisfies condition in Proposition 2 and (C3) condition
then gψ on Lp(Rn), that means there exists Cn,α,p > 0 such that for f ∈ Lp(Rn) then

‖gψ(f)‖Lp ≤ Cn,α,p‖f‖Lp

Proof. Using Proposition 3, 4 and by Marcinkiewicz interpolation Theorem, we obtain gψ is
bounded on Lp(Rn), where 1 < p ≤ 2. Let g∗ψ be the dual of gψ. It’s assotiated with ψ2−j (−x)

by convolution relation, and implies (C1)-(C3) condition. By duality we obtain, for 2 < p <∞
and 1

p + 1
q = 1

‖gψ(f)‖Lp = sup
‖h‖Lq=1

〈gψ(f), h〉 = sup
‖h‖Lq=1

〈f, g∗ψ(h)〉 ≤ ‖f‖Lp sup
‖h‖Lq=1

‖g∗ψ(h)‖Lq ≤ Cn,α,p‖f‖Lp .

We conclude the LPS operator is bounded on Lp(Rn) for 1 < p <∞.

Remark 6. For α ≥ 1 constant of boundedness is not depend with α, but not for 0 < α < 1.
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