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Abstract. Lebesgue Measure plays an important role in defining width of area under 
some graphs of real-valued function while the domain lies in real number system 
accurately. Yet such measure fails to approximate the area under the graph when we 
try to generalize the function with multiple variables. This is due to the Lebesgue 
measure has always zero value for any flat region lies in	ℝ�. In this paper we try to 
reconstruct more general line integral definition rather than usual Riemann line 
integral as well. The easiest way to do this is through the use of Hausdorff measure 
due to its dimension concept allows us to measure the length and area in  ℝ� as well 
as it has been already done in	ℝ. The result of this research is Lebesgue-Hausdorff 
line integral for Hausdorff measurable functions dimension 1 which lie under any 
simple curves. 
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1.  Backgrounds 
As known previously, Hausdorff measure for some subset E of ℝ� is the supremum of total of some 
sets radius which cover  E. This topic was mentioned by [1], i.e for any subset � ⊂ ℝ� and � > 0, 

� −cover of E is some colletion of sets {��} which cover E i.e  k
k

IE   and diameter of each ��  is 

less than �. For some 20  s Hausdorff content s dimension or shortly said is s-Hausdorff content 
with radius � > 0 is defined to be  
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with kI  denotes diameter Ik and s-Hausdorff measure is defined to be  

H (E) = H (E) 

 As smallest � as possible will be given, it will give greater Hausdorff content. This fact implies 
following equivalent definition of Hausdorff measure as following 
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Theorem 1.1. H (E) = H (E) = H (E). 

Proof:  If exist  such that  then it will be trivial. If for each , ��
�(�) < ∞  

then for each � > 0 there exists such that for every  implies                          

H (E)- H (E).  Therefore, H (E)- H (E) H (E)+  for arbitrary � > 0. 

In other words H (E) = H (E).  

Furthermore, we have some useful following theorem 
Theorem 1.2. Hausdorff measure satisfies following properties 

- H ( ) = 0. 

- For each F G ℝ�and s > 0 satisfies H (F) H (G) . 

- For each {Fi} is a collection of subsets of 	ℝ� , satisfies . 

 
Hausdorff measurability of set � ⊂ ℝ� is defined to be 

�� (�) = �� (� ∩ �) + �� (� − �) 

for every	� ⊂ ℝ�. 

2.  New Genelaizations 
In the beginning of construction process, first we have to ensure that each curve with certain condition 
should be Hausdorff measurable. We mean such curve is a differentiable continuous function 
�: [�, �] → ℝ�.  Any curves defined on closed bounded interval subset of ℝ always have 
finite length [2]. This will be explained as theorem below. 

Theorem 2.1 Each curve  �: [�, �] → ℝ� has ∫ ‖�′(�)‖�� < ∞
�

�
. 

Proof:  
The concept of line integral is related strongly to the concept of length of the curve. Before 

we discuss about measurability we need the lemma below. 
 
Lemma 2.2 Let � ⊂ ℝ� be a set and mapping	�: [�, �] → �. If f is a continuous bijection and A is 
Hausdorff then f is homeomorphism.  

  
Proof: We just have to show that ��� is continous. Let U  be an arbitrary closed subset of 
[a,b]. We have the set U is compact. This implies �(�) is compact in A. As A is a Hausdorff  
set and �(�) is compact in � ⊂ ℝ�  then �(�) must be closed. 
Lemma above gives direct consequence as corollary below. 
 
Corollary 2.3. Every image of injective curve �: [�, �] → ℝ� which I is bounded interval in ℝ 
is  homeomorphic with its domain. Note  that for each curve �: [�, �] → ℝ�. Length of the 

curve is defined to be �(�) = ∫ ‖�′(�)‖��
�

�
, with the norm is standard Euclidean norm on ℝ�. 

The following theorem explains a relation between injective curve and its length. The 
theorem plays an important role to decide an exact value of Haussdorff measure of curve 
image. 
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Theorem 2.4. Every image of injective curve �: [�, �] → ℝ� is homeomorphic with interval 
[0, �(�)]. 

Proof: We define map �: [0. �(�)] → �[�, �] i.e �(�) = �(�)  if and only if ∫ ‖�′(�)‖��
�

�
=

� for some � ∈ [0, �(�)].   
First, we prove that f is surjective. For each �(�) ∈ �[�, �]. If � = � then it is obvious. For 

� ≠ �. Since � is rectifiable then ∫ ‖�′(�)‖��
�

�
 must be exist. Let us say ∫ ‖�′(�)‖��

�

�
= � for 

some positive number u.  Since we have bxa  , hence  

)()(')('0  Ldttdttu
b

a

x

a

  . 

Then )](,0[ Lu  and )()( xuf  . 

We will show that f is injective. Let us say ∫ ‖�′(�)‖��
�

�
= � and ∫ ‖�′(�)‖��

�

�
= �  so, � ≠ �. 

The result is � ≠ �. Since � is injective, we have �(�) ≠ �(�). In other word, �(�) ≠ �(�). 
Now we have to show that f is homeomorphism. For any � ∈ [0, �(�)]  and any sequence 

}{ nu  in )](,0[ L   which is convergent to u. Let 0  be any positive number,  there is positive 

integer n0 for every 0nn   we have  uun . This implies that each n, there will be xn so, 

∫ ‖�′(�)‖��
��

�
= ��  and there is x so, ∫ ‖�′(�)‖��

�

�
= �.  

 
Therefore  

)()( ufuf n       = )()( xxn  
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   uun . In other words )}({ nuf  converges to f(u).  

So, f  is a continuous function. By lemma 1.2 we conclude that f is homeomorphism.  
 

Next, we will find Hausdorff measure as an exact value for any curve defined on some interval 
[a,b]. First, we have to present following theorem as written in [1] below: 

Theorem 2.5. If R and R R  is Lipschitz then 

 

By Lip( f ) is Lipschitz Constant of f. 

Proof: Let and fix some . Let  be any � −cover of A. This results 

 for each k.  Therefore 
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Because of this condition works for any � −cover of A, then we have 

. 

Allowing � tends to 0 gives 

. 

 
Theorem above gives direct consequence as below. 

Corollary 2.6. If R and R R  is Lischitz then 

 

Corollary above is easy to be proved by Isodiametric Inequality 
 
[3] explained in his thesis the next theorem. 
Theorem 2.7.  If  �: [�, �] → ℝ� is injective curve then ��(�[�, �]) = �(�). 

By �(�) = ∫ ‖�′(�)‖��
�

�
, i.e arclength of curve �. 

Proof: Let be any partition on [a,b]. We have 
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Since   is injective then we have  
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By taking supremum on the right side of equation results. 

)(]),[(1  LbaH   

Another side, let ],[)](,0[: baLf   by  if only if ∫ ‖�′(�)‖
�

�
�� = �. In other words 

f is inverse function of primitive line integral � along [�, �]. Therefore, . 

In other words  is Lipschitz. By theorem 2.5 we have 

)(]),[(1  LbaH   

this ends our proof. 
 

The last fact which is explained in theorem 2.4 and theorem 2.7 gives important result as follows 
 
Corollary 2.8. Every injective curve   �: [�, �] → ℝ� is 1-Hausdorff measurable and  

��(�[�, �]) = �(�). 

3.  Hausdorff Measurable Functions 
Note that a measure � over ℝ� is said to be Borel measure if every open set in ℝ� is measurable 
[4]. Obviously Hausdorff measure is a Borel measure. This fact becomes a reason to define 
measurability of multivariable function as below.  

Definition 3.1. Let �: � ⊂ ℝ� → ℝ be a function. Function f  is called s-Hausdorff 

measurable if for each open set RO  implies )(1 Of  s-Hausdorff measurable. 
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The above definition is equivalent to the following theorem 
Theorem 3.2. Function �: � ⊂ ℝ� → ℝ is s-Hausdorff measurable iff for each R , the set 

)),((1  f  is  s-Hausdorff measurable. 

 
Furthermore, the  theorems implies that all of continuous function is s-Hausdorff measurable. 
Our next theorem is another consequence of the aforementioned definition 
 
Theorem 3.3. Let �: � ⊂ ℝ� → ℝ be a function. The following statements are equivalent: 

(i) For each R  implies )),((1  f  s-Hausdorff measurable. 

(ii) For each R  implies )),([1  f  s-Hausdorff measurable. 

(iii)For each R  implies )),((1 f  s-Hausdorff measurable. 

(iv) For each R  implies ]),((1 f  s-Hausdorff measurable. 

 
Proof : Since ���((�, ∞))� = ���((−∞, �]) and	���([�, ∞))� = ���((−∞, �)) then (i)  is 
equivalent to (iv) and statement (ii) is equivalent to (iii). We suffice to prove that (i) 
equivalent to (ii). Suppose that (ii) occurs. Therefore 
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f   is s-Hausdorff measurable for each n then ���([�,∞))  s-Hausdorff 

measurable. Similarly,  one can prove that 
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(ii) implies (i). This completes the proof. 
 
This is an important theorem for the construction of  that integral 
Theorem 3.4. Let  �: [�, �] → ℝ� be a curve   and a function �: � ⊂ ℝ� → ℝ so, the image � lies in 
E. If f is 1-Hausdorff measurable  then the restriction of f over image of curve � is 1-Hausdorff 
measurable. 

Proof: Since f  is 1-Hausdorff measurable, for each open set O we have )(1 Of   is  1-Hausdorff 

measurable.  

Note that the restriction f over image of curve �, i.e ],[:
],[

baf
ba




ℝ  by 
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 for each (�, �) ∈ �[�, �]. Let O be an open set in ℝ. Because Hausdeorff 

measure is Borel measure (for arbitrary s), ],[)()( 11

],[
baOfOf
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 should be 1-Hausdorff 

measurable. We conclude that � is 1-Hausdorff measurable. 
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Here is the definition of characteristic function 

Definition 3.4. Let E ⊂ ℝ�. Characteristic function of E is function such that 
��	:	ℝ

� ⟶ ℝ 
by  

��	(�, �) = �
1,					(�, �) ∈ �	
	0,						(�, �) ∉ �	

 

 
Thus,the  definition is s-Hausdorff measurable if the domain is s-Hausdorff measurable. This 
fact is represented as following theorem 
Theorem 3.5. Let E ⊂ ℝ�. The set E s-Hausdorff measurable if f  ��  s-Hausdorff 
measurable. 
Proof: Suppose E ∈ 	ℝ. Let �	 ≥ 1,	 then the set{	(�, �) | ��	(�, �) > �}	= ∅. If 0 < � < 1,	 
then {	(�, �) ∈ 	ℝ | ��	(�,�) > �}	= �. If � < 0,	then {	(�, �) ∈ 	ℝ | ��	(�, �) > �}	= ℝ�. 
Therefore, ��	is s-Hausdorff measurable if f E s-Hausdorff measurable. 
 
Note that the function	�, �: � ⊂ ℝ� → ℝ is said to be equal to almost everywhere if the set 
{(�, �): �(�, �) ≠ �(�, �)} has 0 Hausdorff measure. It is notated by � = � a.e. The equality 
“almost everywhere” preserves measurability of Hausdorff. 

4.  Lebesgue-Hausdorff Line Integration  
Before we ready to define the integral of multivariable function along with any simple curves, first we 
have to define the particular case of simple curve, i.e injective curve. We begin by definition of simple 
function as follow: 
Definition 4.1 Let E be an s-Hausdorff measurable set. An s-simple function is real valued function  
� : � ⊂ ℝ� → ℝ such that there is collection of s-Hausdorff measurable sets {��,��, … , ��} such that 

k

p

k
EE

1
 and collection of real numbers ��, ��, … , �� with 

�(�) = � �����

�

���

 

Furthermore, the s-simple function is said to be simple function with canonical representation if for 
each index i, j such that � ≠ � implies ��∩ �� = ∅ and �� ≠ ��. 
 
Note that for special case if  
 
As the image of a curve defined on compact interval is 1-Hausdorff  measurable, we are able to define 
Lebesgue-Hausdorff integral of simple function along with injective curve as follows 
 
Definition 4.2 Let  �: [�, �] → ℝ� be an injective curve and 1-simple function � :�[�, �] → ℝ  such 

that �  has positive Hausdorff measure of its image on ℝ2 and  

� = � �����

�

���

 

for some 1-Hausdorff measurable sets {��,��, … , ��} by k

p

k
Eba

1
],[


 and real numbers 

��, ��, … , ��. 
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Lebesgue-Hausdorff line integral of  �  is defined to be  

(��)� �
�

�� = � ���
�

�

���

(��) 

 
Therefore, integral must be exist due to theorem1.1 and every subset of a 1-Hausdorff measurable set 
which has the Hausdorff’s dimension could not exceed beyond 1. 
Now we are ready to define the integral of more general function as follows 
 
Definition 4.3. (Lebesgue-hausdorff Line Integral) Let  �: [�, �] → ℝ� be an injective curve and 
function :ℝ� → ℝ .  
Lebesgue-Hausdorff Lower Line Integral is defined to be: 

(��)� �
�

�� = ����(��) � �
�

��:� ≤ �, �	��	1 − ��������������	��	�[�, �]� 

 
Lebesgue-Hausdorff  Lower Line Integral is: 

(��)� �
�

�� = ��� �(��) � �
�

��: � ≤ � , ���	1 − ������	��������	��	�[�, �]� 

 
Function f is called Lebesgue Hausdorff line integrable if 

(��) � �
�

�� = (��) � �
�

�� < ∞ 

 
 
Furthermore the value of integral is defined to be 

(��) � �
�

�� = (��)� �
�

�� = (��) � �
�

�� 

 
Note that if �:ℝ� → ℝ is bounded and 1-Hausdorff measurable over image of �, then the integral 
must be exist. For example of such functions are continuous functions and continous almost 
everywhere functions.  
Now, we will extend the definition for more general type of curve. First we define another important 
type of curve. Such curve is called loop i.e the curve  �: [�, �] → ℝ� which )()( ba    the 

restriction to (a,b) is an injection. 

Note for any loop �: [�, �] → ℝ�. It is easy to prove that 
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a , . This implies ],( ba  is also 1-Hausdorff measurable. 

Since �[�, �] = �(�, �] ∩ �({�})� and ����({�})� = 0 hence  ],[ ba  is 1-Hausdorff measurable.  

 
The fact above motivates to define Lebesgue-Hausdorff line integral for more general curve, i.e simple 
curve.  
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Definition 4.4. A curve �: [�, �] → ℝ�  is called simple if the restriction over (a, b) is an injection. 
 
From above definition is clear that injective curve and loop are examples of simple curves. 
Definition 4.5. Let  �: [�, �] → ℝ� be a curve and 1-simple function � :�[�, �] → ℝ such that �  has 

positive Hausdorff measure of its image on ℝ2 and   

� = � �����

�

���

 

for some 1-Hausdorff measurable collection of sets {��, ��, … , ��} such that k

p

k
Eba

1
],[


 and real 

numbers ��, ��, … , ��. 
Hausdorff-Lebesgue line integral  �   is defined to be   

(��)� �
�

�� = � ���
�

�

���

(��) 

 
 
Now we are ready to define Hausdorff-Lebesgue line integral for more general case as following 
 
Definition 4.3.4. (Lebesgue-Hausdorff Line Integral) Let  �: [�, �] → ℝ� be a simple function and   
function �: ℝ� → ℝ. 
Lebesgue-Hausdorff Lower Line Integral is defined to be: 

(��)� �
�

�� = ����(��) � �
�

��: � ≤ �, �	��	1 − ������	��������	��	�[�, �]� 

 
Lebesgue-Hausdorff  Lower Line Integral is: 

(��) � �
�

�� = ��� �(��) � �
�

��: � ≤ � , � 	��	1− ������	��������	��	�[�, �]� 

Function f is called Lebesgue-Hausdorff line integrable if  

(��) � �
�

�� = (��) � �
�

�� < ∞ 

Furthermore the value of integral is defined to be 

(��) � �
�

�� = (��)� �
�

�� = (��) � �
�

�� 
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